

elementenergy

CCS sector development in the UK

Keeping CCS moving in the EU

25th February 2015

Emrah Durusut emrah.durusut@element-energy.co.uk

Element Energy Limited www.element-energy.co.uk

About Element Energy – a consultancy focussed on the energy sector

- Element Energy is a **specialist energy consultancy**, with an excellent reputation for rigorous and insightful analysis across a wide range of low carbon energy sectors
- These include: Carbon capture and storage, energy systems, energy networks, renewable energy systems, the built environment, hydrogen and low carbon vehicles
- We consult on both **technical and strategic issues** we believe our technical and engineering understanding of the real-world challenges support our strategic work

Consumers behaviour **Energy technologies Energy networks** Advanced geographic **Project management** modelling modelling modelling modelling Strategic market **Policy** Commercialisation Techno-economic **Project financing** recommendations analysis strategies studies

Recent Element Energy publications in the CCS sector

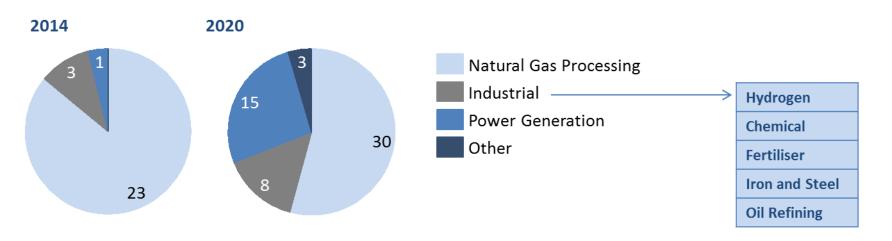
- Energy Technologies Institute (2015), "CCS Sector Development Scenarios" to be published in March 2015
- The CCC (2015), "CCS cost reduction" to be published later this year
- The CCC (2014), "Infrastructure in a low-carbon energy system to 2030: CCS", available at: http://www.theccc.org.uk/wp-content/uploads/2013/12/CCC-Infrastructure-CCS-report-290114.pdf
- SCCS CO₂-EOR JIP (2014), "Analysis of Fiscal Incentives", available at: http://www.sccs.org.uk/expertise/reports/sccs-co2-eor-joint-industry-project
- DECC and BIS (2014) "Demonstrating CO₂ capture in the UK cement, chemicals, iron and steel and oil refining sectors by 2025", available at:
 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/311482/Element_nt_Energy_DECC_BIS_Industrial_CCS_and_CCU_final_report_14052014.pdf
- Scottish Enterprise (2014), "CCS Hub Study for Scotland and the Central North Sea", available at: http://www.element-energy.co.uk/publications/
- Scottish Enterprise (2012), "Economic impacts of CO₂ enhanced oil recovery for Scotland", available at: http://www.scottish-enterprise.com/knowledge-hub/articles/publication/co2-enhanced-oil-recovery

Background to material presented

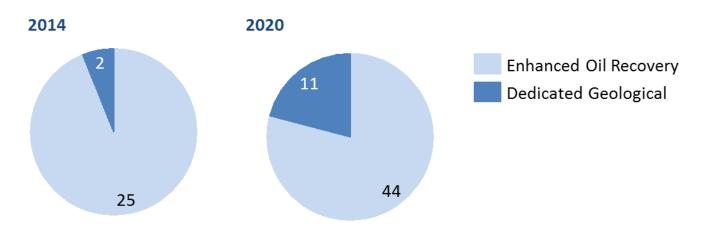
This talk draws on insights from:

- Energy Technologies Institute, "CCS sector development scenarios"
- Committee on Climate Change, "CCS Cost Reduction"

Both projects are work in progress and being delivered in partnership with Poyry


DISCLAIMER - all material presented today represents the view of the author, not clients, partners or stakeholders

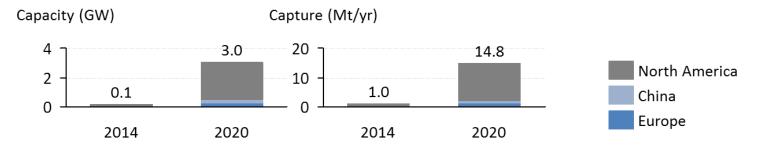
Agenda


- Review of current international CCS developments
- CCS sector development scenarios
- Key requirements for CCS roll-out

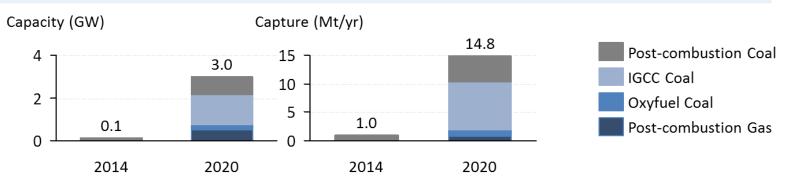
CO₂ capture capacity in the power generation sector is expected to increase from 1 Mt/yr in 2014 to 15 Mt/yr by 2020: the highest increase among all CCS sectors

Global CO₂ capture capacity by sector, MtCO₂ / yr

Global CO₂ capture capacity by storage type, MtCO₂ / yr



Coal CCS projects (mainly in North America) are projected to make up 95% of the global power CCS capture capacity by 2020


Overview

- Currently Boundary Dam, with a power capacity of 139MW, is the only operating power CCS scheme, however by 2020 there will be a total of 9 (expected) power generation projects which will globally capture 14.8MtCO₂ per annum (~3 GW).
- Coal CCS projects (mainly in North America) are projected to make up 95% of the global power CCS capture capacity by 2020 and more than 85% of the captured CO₂ is expected to be used in CO₂-EOR operations.

Power CCS projects by location

Power CCS projects by capture type

International learning has a role to play; however, most of the CCS cost reduction mechanisms in the UK are driven by UK specific actions and deployment

Cost reduction mechanisms in the UK	Potential impact of global learning
Capture plant technology learning and economies of scale	Medium to high impact for post-combustion coal and IGCC coal Limited for oxyfuel coal and post-combustion gas as these are already being tested in the UK
Transport and storage economies of scale	No impact – UK driven
Improved financeability	Limited impact – mostly UK driven
Enhanced Oil Recovery	Limited impact – UK drequires UK based deployment

Agenda

- Review of current international CCS developments
- CCS sector development scenarios
- Key requirements for CCS roll-out

CCS sector development scenarios: Project background

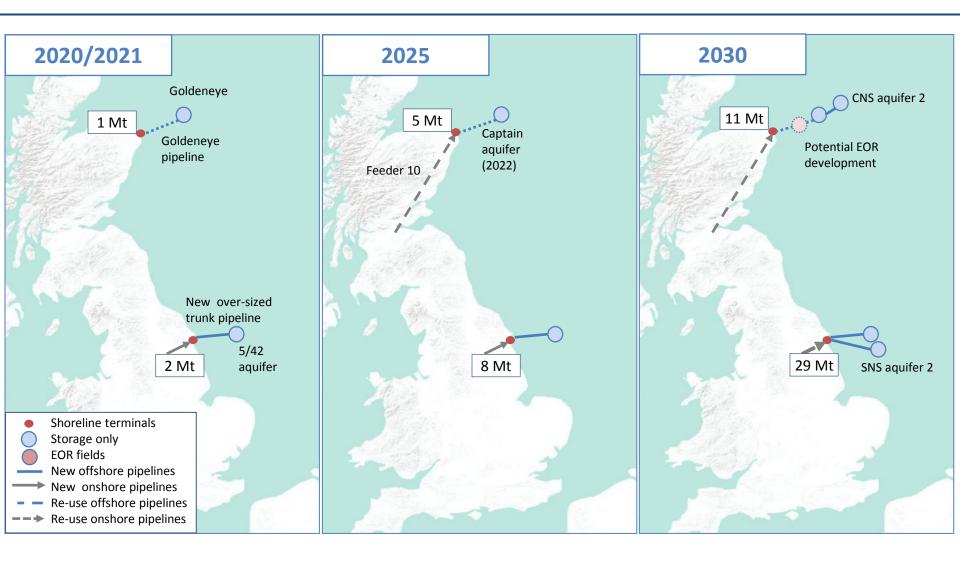
- CCS can play a critical role in enabling low cost decarbonisation of the broader UK energy system including industrial CCS.
- Without CCS, the cost of reaching UK Climate Change targets will double from a minimum of around £30bn per year in 2050*
- ETI ESME scenarios suggest that a cost-optimal 2050 energy system in the UK would require building a sector storing ca. 100 million tonnes of CO₂ by 2050.
- To reach this target requires the establishment of a CCS sector and associated infrastructure by 2030, storing ca. 50 million tonnes of CO_2 with ~10 GW of power CCS and contribution from industrial sources.

Three CCS sector development scenarios

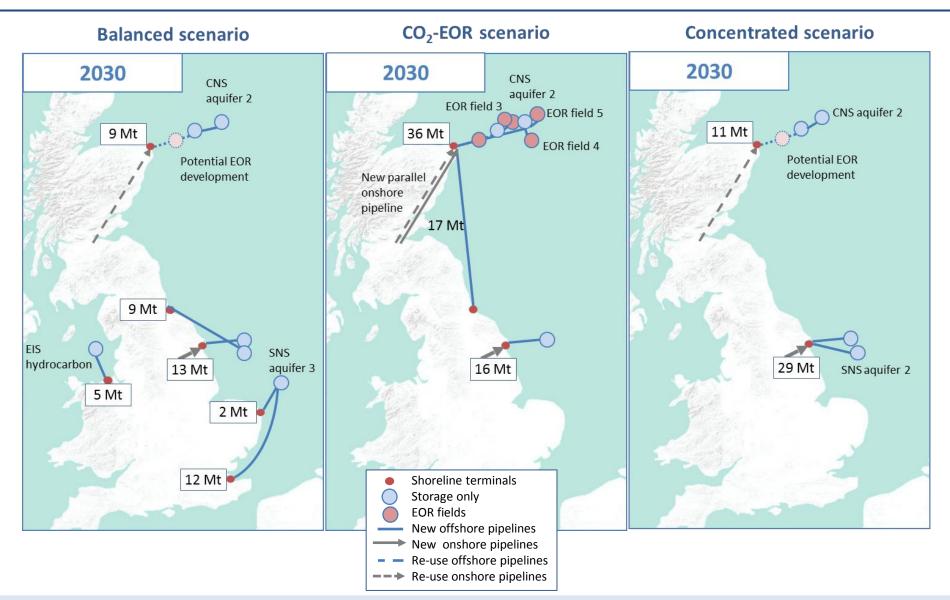
"CO₂-EOR"

- Implement Wood's recommendations to coordinate UKCS oil production and increase commercial attractiveness.
- High CO₂-EOR policy support (e.g. tax incentives)
- CO₂ has a value due to the demand from the CO₂-EOR projects in the CNS

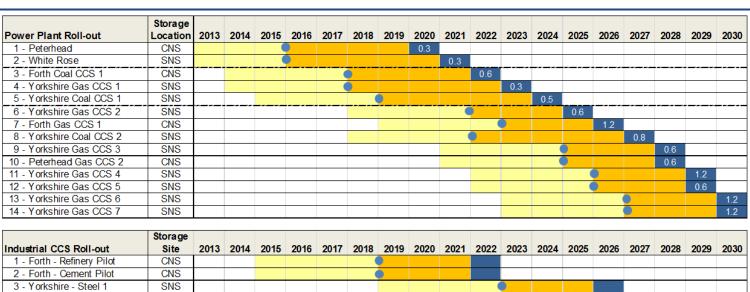
"Concentrated"


- Geographic concentration around the two competition projects to reduce T&S costs and barriers.
- Dominant role for SNS storage and gas CCS

CCS growth

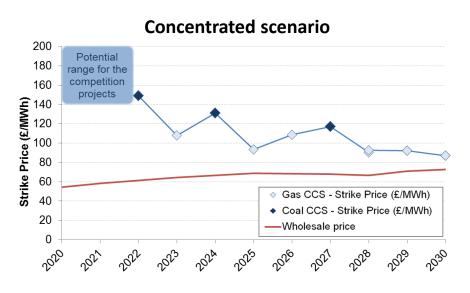

"Balanced"

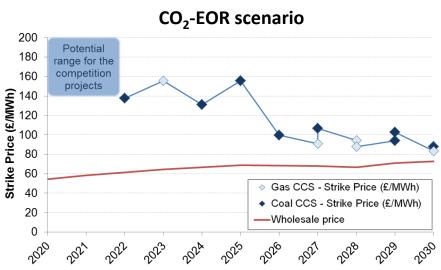
- Push "on all fronts" to win support from diverse stakeholders
- A variety of regional source clusters
- Multiple fuel sources and capture technologies

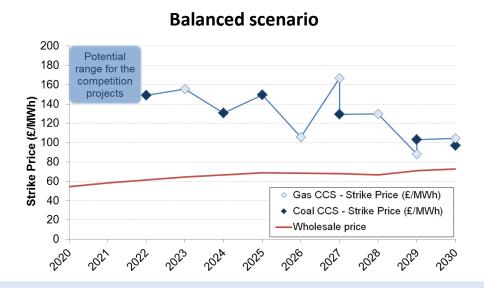

"Concentrated" scenario: Transport and storage network development

Comparison of the scenarios: Transport and storage network development

"Concentrated" scenario: Timelines for capture and storage deployment


	Storage																		
Industrial CCS Roll-out	Site	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
1 - Forth - Refinery Pilot	CNS																		
2 - Forth - Cement Pilot	CNS																		
3 - Yorkshire - Steel 1	SNS																		
4 - Forth - Refinery 1	CNS																		
5 - Forth - Cement	CNS																		
6 - Forth - Chemical	CNS																		
7 - Yorkshire - Chemical	SNS																		
8 - Yorkshire - Steel 2	SNS																		
9 - Forth - Refinery 2	CNS																		


Storage Site Roll-out	Location	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
1 - Goldeneye gas field	CNS																		
2 - 5/42 aquifer	SNS				9														
3 - Captain aquifer	CNS																		
2a - 5/42 expansion (illustrative)	SNS																		
4 - CNS aquifer 2	CNS																		
5 - SNS aquifer 2	SNS																		


Screening and exploration
Appraisal
Development (planning and design)
Construction
Commissioning
Store expansion
FID

Phase 2 projects need to take investment decisions quickly in order to achieve 10 GW power CCS by 2030, and cost reduction through momentum building and economies of scale.

Comparison of the scenarios: CCS cost reduction

- All scenarios achieve significant cost reductions through a variety of mechanisms with CCS costs less than £100/MWh by 2030 for some CCS technologies
 scale of cost reductions vary by technology and scenario (as well as implied policy choices)
- 10 GW scale power CCS sector with a number of industrial CCS projects storing ca. 50 Mt/yr by 2030 can be delivered by creating a supportive policy environment with early action on critical issues to bring forward timely investment

Agenda

- Review of current international CCS developments
- CCS sector development scenarios
- Key requirements for CCS roll-out

Key requirements for CCS roll-out based on the CCS scenarios

Timely implementation of <u>both</u> CCS Commercialisation Programme projects

• Early investment in physical appraisal to expand the promising 5/42 and Captain aquifer stores and appraise further sites

- Enable early investment decisions by phase 2 projects by awarding a further 3 appropriately designed CfDs by 2020
- Stimulate a robust project development pipeline by delivering clear signals to investors and project developers about the scale and strength of policy (levy control framework support) commitment to developing CCS

Other issues to be resolved

Governance for infrastructure sharing:

 A purely negotiated incremental cost approach would have very different strike price implications to a more regulated network charging framework.

Strategy for capture readiness:

a wave of investment in unabated gas-fired capacity may be needed by the early 2020s –
 i.e. ahead of CCS sector development

Financial incentives for industrial CCS:

- clear potential for cost-efficient CO₂ capture from industry before 2030
- need early resolution of financial incentives.

Risk management and governance for CO₂-EOR:

- How to kick-start a CO₂-EOR market in the North Sea and manage oil-price risks,
- Greater complexity in cross-sector co-ordination and public support

Reflecting strategic value in CfD allocation decisions:

 No clear case for government to pick technologies, fuel types and locations, but how will policy on CfD allocation take these issues into account?

Thank you for your attention

If you have questions, please contact:

Emrah Durusut emrah.durusut@element-energy.co.uk

Element Energy Limited www.element-energy.co.uk